Свечи зажигания экспертиза

Содержание страницы:

Свечи зажигания: свечной заводик

Работодатель пушкинского Балды серьезно пострадал в погоне за дешевизной. И все же очередную экспертизу свечей зажигания мы решили посвятить недорогим изделиям, аналогам наших А17ДВРМ. Ведь именно такие свечи с шестигранником «на 21» поджигают смесь семейству вазовских восьмиклапанных моторов, а также множеству иномарок не первой свежести. А покупать на такие авто что-то утонченно-иридиевое нерационально. Поэтому решили ограничить расходы круглой суммой: не больше 100 рублей за свечу.

Удивило разнообразие в этом ценовом сегменте – множество не только брендов, но и вариантов конструкции. Да и стоимость покупки, даже при жестком ограничении сверху, различалась почти втрое. Что ж, так даже интереснее.

Классика и оригинальность

Мы закупили по два комплекта каждого типа. Основную массу составили классические одноэлектродные свечи: отечественные – марки Tsitron, «японцы» NGK и Denso и «европейцы» (судя по надписям на упаковке) BERU, Ween, HOLA. Но под наш ценовой критерий подошли и несколько не совсем обычных конструкций.

Во-первых, это чуть ли не единственная российская многоэлектродка – «ЭЗ-Standard Т17ДВРМ» Энгельсского завода, с тремя боковыми электродами. Во-вторых, за означенную сумму мы умудрились купить даже свечи с платиновыми электродами – Bosch Platinum WR7 DPX, причем самой интересной схемы: с тонким центральным электродом, полностью утопленным в корпус изолятора. В эту компанию вошел и чешский иттриевый Brisk – с заточенным на конус боковым электродом.

Насколько такие свечи лучше обычных (да и лучше ли?), покажет эксперимент. В качестве планки отсчета при проведении моторных испытаний мы взяли «классику жанра» – одноэлектродные «ЭЗ-Standard Т17ДВРМ». Сравнение проведем по четырем показателям: стабильность конструктивных параметров, результат комплексных моторных испытаний, экология, работа в нештатных ситуациях.

Спросим читателей

Зазоры и сопротивления

Для начала свечи обмерили, получив величины предустановленных искровых зазоров и электрических сопротивлений. Зачем? Чтобы сразу отсеять изначально негодные образцы. Таких на сей раз не оказалось (хотя прежде брак попадался). Кроме того, интересно оценить неравномерность конструктивных параметров по каждому бренду: чем она ниже, тем выше уровень производства.

Лучшими оказались NGK, Denso, а также Bosch. К сожалению, Tsitron показал невысокую стабильность, особенно на фоне лидеров.

Закончив с щупами и омметрами, мы перетасовали свечи и сформировали для каждого бренда новые комплекты: назовем их условно «хороший» и «обычный». Первый – из тех свечей, параметры которых наиболее близки к средним по выборке. Второй – из того, что осталось. Задавать уровень отсчета при моторных испытаниях будут два комплекта одноэлектродных свечей «ЭЗ-Standard А17ДВРМ».

Мощность, расход, токсичность

В какой мере качество и особенности свечей способны повлиять на характеристики двигателя? Отлавливать придется считаные проценты, поэтому нужны стендовые условия, чтобы полученные эффекты не съела погрешность измерений. Последовательно ставим каждый комплект на инжекторный мотор ВАЗ-2111 и в фиксированных режимах оцениваем изменение мощности, расхода топлива и токсичности отработавших газов относительно «ЭЗ-Standard А17ДВРМ».

Сначала прогнали на моторе «хорошие» комплекты, затем «обычные». Итоговый результат складывался из достижений обоих наборов. А разброс результатов должен был показать степень зависимости показателей двигателя от стабильности параметров свечей.

РЕЗУЛЬТАТЫ ПРОВЕРКИ СТАБИЛЬНОСТИ КОНСТРУКТИВНЫХ ПАРАМЕТРОВ

Среди классических свечей из «хороших» комплектов разброс по мощности и экономичности сравнительно невелик – до 2…3%, по экологии – чуть больше: до 7…9%. А вот «оригиналы» дали заметное улучшение параметров. Наиболее эффективными оказались платиновые Bosch, вторыми пришли на финиш – внимание! – отечественные трехэлектродные «ЭЗ-Standard»! Тут явно сработал принцип открытой искры, реализуемый в многоэлектродных схемах, о чем мы неоднократно писали (например, ЗР, 2006, № 10).

Brisk оказался только седьмым по моторным показателям.

Изюминка этих свечей – иттриевый сплав, но он в основном продлевает ресурс, не оказывая особого влияния на качество искрообразования. Заточив боковой электрод на конус, конструкторы, по нашему мнению, ошиблись. Подобная форма целесообразна, когда он заканчивается над центральным электродом (так у NGK и Denso). В этом случае образуется зона локального повышения интенсивности электрического поля и, стало быть, меняются условия искрообразования. А в варианте, предложенном Brisk, боковой электрод далеко выступает за центральный – и поэтому условия образования искры здесь практически не меняются.

Кстати, обратите внимание: при проверке «обычных» комплектов преимущество лидеров выражено сильнее! Потому совет: даже экономя, приглядитесь повнимательнее к лидерам. Чем меньше различаются параметры свечей, тем лучше поедет ваша машина!

Когда гаснут свечи…

Следующие два испытания. Мы всегда подчеркиваем, что за ограниченное время смоделировать в полном объеме все беды реального двигателя – отложения, износ свечей, холодные пуски и т. п. – почти невозможно. Но можно косвенно оценить устойчивость работы свечей в экстремальных условиях по тому, как они поведут себя при пониженном напряжении в бортовой сети. Например, при 9 В вместо привычных четырнадцати. Само собой, над топливным насосом и электроникой издеваться не будем: нас интересует только разница в поведении свечей. Потому переходим на стенд с карбюраторным мотором.

Таблицы открываются в полный размер по клику:

КОМПЛЕКСНЫЕ МОТОРНЫЕ И ЭКОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ

В этих испытаниях участвуют «лучшие». Итоги подтвердили результаты предыдущей серии – удачнее других выступили платиновые тонкоэлектродные свечи Bosch и отечественные трехэлектродки. Причем разброс между лидерами и аутсайдерами заметно вырос, особенно по токсичности отработавших газов.

Последний тест. Проверяем, при каком минимальном напряжении питания свечи продолжают искрить. Стендовый двигатель выводим на стабильные температурные параметры, а потом плавно понижаем напряжение до полного прекращения искрообразования. Лучший показатель по этому параметру вновь выдал Bosch, сдавшийся только на рубеже 5,88 В. А первым капитулировал Tsitron: 7,88 В.

РЕЗУЛЬТАТЫ ПРОВЕРКИ НАДЕЖНОСТИ В НЕШТАТНЫХ УСЛОВИЯХ

Балда не совсем прав!

Итоги – в таблицах. Неожиданность, причем приятная, одна: давненько российские изделия не выигрывали наших тестов. А здесь трехэлектродные и при этом недорогие свечи заняли второе место, вклинившись в группу признанных мэтров между Bosch и «японцами».

ИТОГИ ИСПЫТАНИЙ СВЕЧЕЙ ЗАЖИГАНИЯ

Даже недорогие свечи способны изменять поведение автомобиля.

А Балда, представьте себе, был не вполне прав! В погоне за дешевизной иногда удается отыскать и нечто достойное…

Терминология и методика

Внешняя скоростная характеристика. Характеризует изменение мощности (или крутящего момента) двигателя в зависимости от числа оборотов его коленчатого вала при полностью открытой дроссельной заслонке (для бензинового мотора).

Параметр мощности. Рассчитывается как среднее увеличение (уменьшение) мощности на всех замеренных точках внешней скоростной характеристики по отношению к базовому комплекту.

Параметр токсичности (отдельно по компонентам СО, СН, NОx). Рассчитывается как средние увеличения (уменьшения) содержания указанных токсических компонентов по отношению к базовому на всех точках нагрузочных характеристик.

Параметр экономичности. Рассчитывается как среднее увеличение (уменьшение) удельного расхода топлива на всех замеренных точках нагрузочных характеристик по отношению к базовому комплекту.

Усредненный моторный показатель аварийный. Принимается равным параметру экономичности.

Усредненный моторный показатель. Рассчитывается как взвешенная сумма параметров мощности и экономичности.

Усредненный показатель токсичности. Рассчитывается как взвешенная сумма параметров токсичности по всем компонентам.

В качестве базового был выбран комплект «ЭЗ-Standard А17ДВРМ». Перед расчетом итоговых показателей качества были приведены к стандартным условиям данные замеров и построены аппроксимации зависимостей, позволяющие использовать одни и те же точки сопоставления по нагрузке.

В каждом виде испытаний участники получали коэффициенты по пятибалльной шкале: 5 баллов за лучший результат и 1 балл – за худший. Остальные оценивались пропорционально положению в таблице. По итогам четырех видов испытаний определяли сумму коэффициентов (конструктивный, моторный, экологический, аварийный), которая и учитывалась при распределении мест.

Сами испытуемые

9 место: TSN, TSITRON, страна не указана

А17ДВРМ

Зазор – не указан

Ориентировочная цена (за 4 свечи) – 140 руб.

Свечи, продающиеся в полиэтиленовых пакетиках, то есть практически россыпью, – такое сейчас не везде встретишь! Низкий шестигранник, нечеткая маркировка, большой разброс по сопротивлениям и зазорам сразу вызвали опасения за результат. Применяемость указана на бумажке, прилепленной на пакетике. Итог – увы, явный аутсайдер…

+ Мотор работает, цена самая низкая.

– Проиграли всем и во всем.

8 место: HOLA, Нидерланды

S14

Зазор – 1,1 мм

Ориентировочная цена (за 4 свечи) – 175 руб.

Самые дешевые среди импортных свечей. Подробное описание, куча сертификатов – все это хорошо. Особо не блеснули, но будут в самый раз, если хочется порадовать машинку чем-нибудь импортным и недорогим.

+ Низкая цена, аккуратное исполнение.

– Не самая высокая стабильность конструктивных параметров.

7 место: BRISK A-LINE, Чехия

13 LR15YCY-1

Зазор – не указан

Ориентировочная цена – 230 руб.

Иттриевые свечи с заточенным на конус боковым электродом и увеличенным выступом центрального электрода. Должны прослужить долго, но в наших испытаниях ничего «эдакого» не показали. Да и цена не самая привлекательная.

+ Известный бренд, аккуратное изготовление.

– Отсутствие каких-либо ощутимых преимуществ.

6 место: BERU, Германия

14R-7DUX

Зазор – 1,1 мм

Ориентировочная цена (за 4 свечи) – 280 руб.

Нормальные свечи классической конструкции с громким именем, при этом – не самая высокая цена. Результаты как бы в тени: ни провалов, ни лидерства ни в одной из номинаций. Честно говоря, бренд приучил видеть его в призерах, но мы же специально выискивали, что подешевле.

+ Ровное выступление на всех этапах.

– Хотелось бы подешевле…

5 место: WEEN, Нидерланды

121-1370

Зазор – 1,1 мм

Ориентировочная цена (за 4 свечи) – 210 руб.

Малоизвестные нашим покупателям голландские свечи оказались ровно посередине таблицы, обогнав куда более известные имена. По стабильности конструктивных параметров эти свечи – четвертые.

Читайте так же:  Возврат части страховой премии при досрочном погашении кредита

+ Неплохое соотношение цена/качество.

– Ни слова по-русски на блистере.

4 место: DENSO, Япония

W20EPR-U11

Зазор – не указан

Ориентировочная цена (за 4 свечи) – 380 руб.

Японские свечи проявили себя лидерами в группе классических коллег. Впрочем, определенная оригинальность есть и в них: на боковом электроде есть U-образная выемка, которая, по мнению фирмы, стабилизирует разряд. Похоже, так оно и есть.

+ Высокая стабильность конструктивных параметров.

– Дороже только Bosch.

3 место: NGK V-LINE, Франция

№13 BPR6ES-11

Зазор – не указан

Ориентировочная цена (за 4 свечи) – 360 руб.

Французский «японец» повел себя хорошо. Первое место по конструктивной стабильности параметров, третье – во всех остальных номинациях. Вот только вопрос: зачем относить обычные, классические свечи к категории V-Line: там мы привыкли видеть канавку в центральном электроде…

+ Высокие результаты во всех номинациях.

– Одни из самых дорогих среди классических свечей.

2 место: ЭЗ STANDARD, Россия

Т17ДВРМ 1.0

Зазор – 1,0 мм

Ориентировочная цена (за 4 свечи) – 230 руб.

Единственный представитель многоэлектродных свечей, попавший в установленный ценовой предел, оказался российским. За вполне доступную цену проявил свои лучшие стороны, заняв вторые места в трех номинациях из четырех!

+ Устойчивое место в первой тройке.

– Если бы не разброс параметров, оказались бы лидерами.

1 место: BOSCH PLATINUM, Германия

WR7DPX

Зазор – 1,1 мм

Ориентировочная цена (за 4 свечи) – 400 руб.

Эта фирма всегда умела делать достойные свечи. Лучшие в трех номинациях из четырех – в итоге золото! Немножко удивило только одно: почему по стабильности параметров «немцы» оказались лишь третьими? Но не будем цепляться к победителям.

+ Лидирующие позиции по всем моторным номинациям.

– Самые дорогие. Увы, не самые стабильные по параметрам.

Свечи зажигания: утомленные искрой

Разряд самой ресурсной из известных нам свечей – DENSO Iridium. Разряд облизывает тонкий центральный электрод диаметром 0,4 мм и тем самым чистит его. В свой тест мы эти свечи не взяли – они не прошли ценовой фильтр. Но для пояснения эффекта самоочистки, продлевающей ресурс свечи, эта картинка очень показательна.

Экспертизы свечей – фирменное блюдо журнала, но… Один важный компонент мы в это блюдо никогда не добавляли – как бы случайно. А ведь вам интересно, как изменятся характеристики свечей после длительной работы в реальных условиях? Проблема в том, что тут одной экстраполяцией не обойдешься: нужно их помучить хотя бы на протяжении 30 тыс. км. А это долго, дорого и очень муторно: на каждый комплект свечей минимум полтора месяца стендовой крутежки мотора! И все же идентичные моторные стенды удалось подготовить.

Мы решили взять свечи, ориентированные на большинство эксплуатируемых у нас восьмиклапанников: на «большой» шестигранник (21-го размера) и с условным калильным числом 17. Зато конструкции старались брать разнообразные. Но цену ограничили: не дороже 800 рублей за комплект. Ведь запускать в такой «пробег» иридиевых фаворитов с изящными тонкими электродами – все равно что свести мадридский «Реал» и команду из нашей второй футбольной лиги…

В качестве базы взяли обычные одноэлектродные свечи: европейские WEEN 370 и японские NGK BPR6ES-11. Компанию им составили трехэлектродные ЭЗ-Т17ДВРМ из Энгельса. За тугоплавкие материалы и сплавы «сыграл» самый дешевый вариант с иттриевыми электродами: чешский Brisk A-line LR15YCY-1. Позиции платины отстаивал Bosch Platinum WR7DPX с тонким центральным электродом. И наконец, DENSO W20TT с оригинальными боковыми и центральным электродами из хромоникелевого сплава. На них отпрессованы специальные выступы, организующие разрядник свечи, – это попытка реализовать преимущества тонкоэлектродных свечей без всяких драгметаллов. Напоминаем: сравниваем конструкции, а не бренды!

Тонкий платиновый центральный электрод Bosch Platinum WR7DPX полностью утоплен в изолятор. Для европейских условий эксплуатации это, наверное, хорошо, но в нашем тесте на отечественных моторах и бензинах такая конструкция несколько снизила ресурс свечи.

Методика испытаний очевидная. Сначала все комплекты последовательно поставили в один и тот же стендовый двигатель – вазовский впрысковый восьмиклапанник. Провели стандартный цикл испытаний – получили стартовую базу. Относительно нее в дальнейшем отслеживали ухудшение характеристик двигателя по мере старения свечей.

Базовые цифры неожиданностей не содержат. Простые одноэлектродки выступили ровно: различия лишь немного вылезли за пределы измерений. А вот трехэлектродки ЭЗ-Т17ДВРМ, тонкоэлектродный Bosch Platinum WR7DPX, а также DENSO W20TT дали заметное улучшение и мощности, и экономичности двигателя. Хотя, конечно же, намеренные 2-3% улучшения дадут видимый эффект для кошелька только при длинных забегах, когда расход бензина считают не канистрами, а бочками. Но именно это мы изначально и хотели уточнить.

Соседи по цеху нас, конечно же, прокляли: грохотом своих стендов мы их сильно достали. С семи утра и до девяти вечера – три месяца, три стенда… Однако всё когда-то кончается: моторы остановлены, свечи выкручены. Электроды и изоляторы почернели, покрылись отложениями, кое-где видны следы эрозии металла. Но даже обычные одноэлектродные комплекты, взятые нами за базу, с честью прошли все круги. Ни одну свечу по ходу забега менять не пришлось: вот тебе и нагруженный цикл испытаний на отечественных бензинах. Это означает, что заявляемый нынче практически всеми производителями даже самых простых свечей ресурс не менее 30 тыс. км пробега – не просто маркетинговый ход.

DENSO W20TT: фирменное решение для стабилизации и интенсификации разряда, причем без применения драгоценных металлов. И оно, как показал наш тест, работает!

А насколько в итоге ухудшились параметры работы? Посмотрим… Для этого в контрольный мотор – тот самый, на котором проводился начальный цикл сравнительных испытаний, – поставили побитые жизнью комплекты и повторили замеры. Полученные результаты сравнили с начальными данными. Теперь можно спокойно сличать циферки.

Базовые комплекты свечей сохранили работоспособность, но заметно снизили показатели двигателя. Расход вырос примерно на 6%, токсичность по СО и СН подпрыгнула на 8–10%. Почему? Потому, что под давлением начали появляться пропуски искрообразования, а это – пропуски вспышек! И контроллер мотора, отловив лишний кислород в выпускной трубе, обогащал смесь. Отсюда и лишний расход, и большая токсичность. Снижение параметров у Brisk A-line было меньше, чем у базовых свечей, но тоже заметное.

Предполагаемый заранее лидер теста – «платиновый» Bosch выступил лучше, но явно отрицательную роль сыграла форма центрального электрода, полностью утопленного в изолятор. В свое время мы уже отмечали это, когда испытывали свечи на бензине с металлосодержащими присадками ( ЗР, 2007, № 1 ). Объяснение простое: искра тонкоэлектродной свечи с обычным, выдвинутым из изолятора центральным электродом как бы облизывает его кончик, очищая от нагаров и отложений. А вот свеча Bosch Platinum данного преимущества лишена: в результате комплект уступил пальму первенства отечественным трехэлектродкам ЭЗ-Т17ДВРМ и японским DENSO W20TT. Эти комплекты дали ухудшение показателей по всем параметрам, но оно лишь незначительно вылезло за пределы погрешности измерений. Так что для них 30 тыс. км – только расцвет жизни! Если, конечно, на пути не встретится АЗС с особо мерзким бензином, способным убить что угодно.

И еще: по обыкновению, мы провели цикл испытаний, который называем аварийным. От мотора отключается штатный генератор, ставится «пустой» аккумулятор, и бортовая сеть запитывается от лабораторного источника тока. Это позволяет отследить реакцию свечей на снижение напряжения в бортовой сети. Вот тут различия между комплектами – как новыми, так и поработавшими – выявились наиболее ярко. И опять лидируют изделия, заявленные как особо долгоиграющие, – DENSO W20TT, Bosch Platinum и наши многоэлектродки. А как выглядели свечи после испытаний, показывают фото. Участники «пробега» расположены по алфавиту.

В заключение немножко арифметики. За 30 тыс. км средний «вазик» скушает около 2500 л топлива, забрав из бюджета примерно 65 тыс. рубликов. Если учесть среднее увеличение расхода, то с учетом начальных различий экономия от применения долгоиграющих свечей составит пару-тройку тысяч рэ. Полезность реального увеличения мощности и снижения выбросов прикиньте сами.

В наши ценовые рамки уложился немецкий комплект с тонким платиновым центральным электродом Bosch Platinum WR7DPX:

Однако хитроумная конструкция с утопленным электродом проявила себя средне, уступив трехэлектродке из Энгельса.

За тугоплавкие материалы и сплавы «сыграл» и самый дешевый вариант с иттриевыми электродами – чешский Brisk A-line LR15YCY-1:

Визуально по конструкции эти свечи не сильно отличаются от обычных одноэлектродок, только кончик бокового электрода у них «заточен» на острую кромку. И это помогло им выступить лучше базовых свечей.

Японские свечи DENSO W20TT:

Здесь на боковом электроде из специального хромоникелевого сплава отпрессован выступ, формирующий зону повышенной интенсивности искрового разряда. В итоге эти «японки» переиграли всех.

Европейские WEEN 370 – простейшие одноэлектродки:

Испытание в целом выдержали, хотя итоговое увеличение потребления почти на 6% говорит о том, что они свое практически отходили.

Японские NGK BPR6ES-11 – одноэлектродки подороже европейских:

5

Комплект трехэлектродных свечей ЭЗ-Т17ДВРМ родом из Энгельса обещал повышенный ресурс:

Что же, многоэлектродки к концу пробега действительно выглядели лучше «одноглавых» собратьев.

ПОЧЕМУ СТАРЕЮТ СВЕЧИ

Что происходит со свечами в процессе их работы? Почему их показатели изменяются?

Факторов несколько. Самый главный – эрозия металла электродов под действием многократного интенсивного искрового разряда. По мере развития эрозионных процессов меняются размер и геометрическая форма искрового зазора. С ростом зазора падает интенсивность разряда, вплоть до его полного прекращения в некоторых режимах работы, в которых условия искрообразования и начального воспламенения смеси в цилиндре затруднены. Это холостой ход, максимальные нагрузки, холодный пуск.

Кроме того, по мере работы в цилиндре поверхности изолятора и электродов покрываются слоем нагара – при определенных условиях токопроводящего. В крайнем состоянии он может образовывать так называемые сажевые мостики, шунтирующие искровую группу свечи.

Под воздействием высоких температур вероятно разрушение защитного покрытия изолятора свечи (глазури) – керамика начинает насыщаться частицами отложений. Сопротивление свечи пробою снижается.

Наконец, термомеханические циклические напряжения в изоляторе также способны привести к его разрушению.

— Что означают термины «сухая» и «сырая токсичность»?

Это сленговые термины двигателистов. Сырая токсичность – та, что сразу после двигателя, до нейтрализатора. Сухая – после нейтрализатора: то, что идет на выпуск.

— Зачем нужны разные свечи, если нейтрализатор все равно дожигает несгоревшую смесь?

Он дожигает далеко не всё (по СН и NOх – примерно до 30–50%). Поэтому чем больше сырая токсичность, на которую влияют свечи, тем больше и сухая. Мало того, нейтрализатор успешно гасит токсичность не во всех режимах: в частности, при обогащении смеси, то есть при разгоне, пуске, больших нагрузках, он тоже работает неэффективно. А на мощность, пуск и расход топлива нейтрализатор не влияет вообще.

Читайте так же:  Международный договор купли-продажи услуг

— Современный контроллер реагирует на пропуски вспышек загоранием Check Engine. А как на это откликается нейтрализатор?

Нейтрализатор на пропуски вспышек не реагирует никак. По крайней мере, по диагностике это не увидишь. Если процесс слишком запущен, то получим снижение его срока службы и, возможно, ранний выход из строя. На пропуски реагирует датчик остаточного кислорода: он ловит лишний кислород, не использованный в цилиндре, и дает сигнал на обогащение смеси.

Таблицы открываются в полный размер по клику мышки:

Свеча зажигания: далеко не просто…

Генри Форд был умным, но очень свое­образным дядькой: современники иногда даже считали его «самодуром с придурью». Рассказывают, однажды он заявил, что ему на заводе не нужны инженеры, которые не могут за час разобрать и собрать двигатель автомобиля. И быстро поувольнял всех, кто не смог.

Самодуром-то он, конечно, был. Но вот его требования к специалистам глупыми уж никак не назовешь. Поскольку результат они давали выдающийся.

Сегодня у нас в авторемонтном бизнесе сложилась ситуация, когда работникам СТО не хватает квалификации – и часто они просто не знают основ своей профессии. Иногда отсутствует даже минимальная техническая грамотность. И потому журнал регулярно публикует статьи, подробно и доходчиво рассказывающие об автокомпонентах – особенностях их эксплуатации, вариантах конструкции, правилах подбора и других «тонкостях», которые специа­листу знать просто необходимо.

Сегодня поговорим о свечах зажигания – компоненте внешне простом, но на самом деле очень сложном, в создании которого используются последние достижения в различных областях науки и уникальные технические решения.

Мало кто знает, что изобретение свечи зажигания (которая и была-то придумана как необходимое дополнение к высоковольтному магнето) не вызвало большого интереса у инженеров-автомобилистов.

Когда Роберт Бош продемонстрировал свою новинку на стенде Парижского автосалона в ноябре 1902 года, то вместо привычной большой и насыщенной искры, возникающей при размыкании цепи (именно так работали модели старых, низковольтных конструкций магнето), для зажигания топлива предлагалась «жиденькая» бледная искра.

Но именно свеча зажигания пережила саму систему, для которой и была придумана, – и сегодня является одним из основных компонентов системы зажигания в бензиновых двигателях.

Что же это такое – свеча?

Парадокс: если смотреть на цифры, то свеча зажигания в современном моторе работать (по крайней мере, долго) не может.

Судите сами: температура в камере сгорания в различные моменты рабочего цикла изменяется от 70 до 2000 и даже 2700°C. (Температура плавления стали – 1500°C.) Давление при сгорании топливовоздушной смеси достигает 50–60 бар. (Дульное давление в стволе гладкоствольного ружья, разгоняющее заряд дроби до 762 м/с.) При этом усилие, стремящееся «выдавить» свечу из свечного отверстия, доходит до 300 кГ (эквивалентно удару кувалды). Причем все эти воздействия – циклические, они изменяются с частотой до 50 раз в секунду.

С такой же периодичностью на свечу поступает высокое (до 40 000 В) напряжение. То есть электроды подвергаются искровой эрозии. А раскаленные продукты сгорания, содержащие фосфор, серу, свинец, оказывают сильное коррозионное воздействие на материалы электродов и изолятора.

Но при всех этих «адских» условиях свеча стабильно и долго выполняет свою основную функцию – транспортирует электрическую энергию внутрь камеры сгорания и преобразует ее в энергию искрового разряда, формирующего ядро пламени.

Чтобы добиться стабильности в работе свечи, инженерам приходится постоянно искать технические решения, чтобы «соединить несовместимое» – металлический корпус и керамический изолятор, биметаллический центральный электрод, керамический резистор и вновь металлический сердечник.

А ведь материалы, из которых изготовлены эти детали, в несколько раз отличаются по способности к температурному расширению и не поддаются неразъемному соединению традиционными способами.

Стоит добавить, что детали в свече соединены не «просто так», а чтобы центральный токовод обладал высокой электропроводностью, и места контакта центрального электрода с изолятором и изолятора с корпусом были герметичны и имели низкое тепловое сопротивление.

Сюда стоит добавить также изготовление ажурного алюмооксидного изолятора сложной формы, «обертывание» миниатюрного медного керна центрального (а в некоторых конструкциях и бокового) электрода в тонкую оболочку из никелевого сплава, приварку лазером к торцу электрода кусочка платиновой или иридиевой «иглы» диаметром в полмиллиметра.

И все эти технологические «чудеса» (способные вызвать ночные кошмары у любого ювелира) происходят в крупносерийном производстве – ведущие компании изготавливают свечи миллионами.

Термоэластичность

Этот термин обозначает широкий тепловой диапазон свечи. Что это такое? Разберемся подробнее…

Современные автомобильные двигатели с каждым годом становятся все мощнее, но при этом все меньше по размерам. А добиться этого возможно только одним путем: повышением давления в цилиндрах, а значит, и увеличением количества тепла, выделяемого при сгорании топливо-воздушной смеси.

Но тепловой режим свечи очень важен для исполнения ее основной, «зажигательной» функции. Он оптимален, если температура самой горячей ее части – кончика теплового конуса (юбки) изолятора, соседствующего с межэлектродным зазором, остается в пределах примерно от 450 до 800 °C.

Нижнюю границу этого диапазона (450 °C) называют «температурой самоочищения»: начиная с нее происходит активное выгорание с поверхности изолятора углеводородных отложений, т.е. изолятор очищается. При меньшей температуре нагар накапливается, образуется электропроводный слой, который шунтирует (закорачивает) искровой промежуток – и искрообразования не происходит.

Тепловую характеристику (калильное число) свечи оптимизируют, изменяя длину центрального электрода и теплового конуса изолятора

Если же температура превышает верхний порог оптимального теплового диапазона (800 °C), то резко возрастает интенсивность износа электродов свечи. Кроме того, возникает опасность преждевременного воспламенения смеси (так называемого «калильного зажигания») от раскаленного кончика изолятора, грозящего повреждением свечи и всего двигателя.

Электроды с наконечниками из экзотических металлов прежде всего увеличивают долговечность свечи

Поэтому температура кончика изолятора не должна выходить за указанные пределы на любых режимах работы мотора. Но с увеличением литровой мощности двигателей теплонапряженность камеры сгорания возрастала – и «удержать» температуру становилось все труднее.

Решением этой проблемы стало увеличение теплопроводности центрального электрода за счет создания биметаллического соединения (сталь-медь). Теплопроводность меди выше, чем у стали, и это позволило интенсивнее отводить тепло от юбки изолятора. Свеча с биметаллическим электродом быстро выходила на режим самоочищения и оставалась работоспособной в более широком диапазоне изменения тепловых режимов в камере сгорания – т.е. она стала термоэластичнее.

Способность свечи отводить тепло характеризуется калильным числом. Чем оно больше, тем выше теплопроводность свечи, тем ниже температура теплового конуса изолятора при равной температуре в камере сгорания – свеча более «холодная». И наоборот, чем меньше калильное число, тем «горячее» свеча.

Стоит отметить, что калильное число свечи зависит не только от теплопроводности цент­рального электрода. На него влияют также длина центрального электрода, площадь поверхности (высота) юбки изолятора, теплопроводность материала изолятора, вылет юбки относительно металлического корпуса.

Кстати, увеличение теплового диапазона свечей позволило существенно сократить их ассортимент.

Искровая эрозия

Основная проблема, сокращающая время эксплуатации свечей, – это искровая эрозия электродов. С каждой пройденной тысячей километров расстояние между электродами из никелевых сплавов возрастает на величину от 3 до 10 мкм. Это приводит к повышению пробивного напряжения: нагрузка на систему зажигания растет, пока не достигнет предела, – и искрообразование становится нестабильным.

Решением проблемы эрозии стало изготовление электродов из экзотических, драгоценных и редкоземельных металлов: золота, платины, иридия, иттрия, родия и их сплавов. Именно их повышенная стойкость против эрозии позволила увеличить ресурс свечи в несколько раз.

Вначале «драгоценным» стал центральный электрод – поскольку он в наибольшей степени страдает от эрозии. Во всех системах зажигания (за исключением DIS) на него подается отрицательный потенциал. Поэтому при искровом разряде его поверхность «бомбардируется» высокоэнергетичными ионами, в то время как боковой электрод «обстреливают» легкие электроны.

Позже эрозионно-стойкими начали делать оба электрода. Свечи типа «дабл экзотик» объективно нужны для применения в DIS-системах зажигания, где каждая пара свечей обслуживается одной «двухискровой» катушкой. Во-первых, в них свечи «искрят» вдвое чаще, чем в других. Во-вторых, половина свечей питается высоким напряжением обратной полярности, поэтому противостоять ионам приходится и боковому электроду.

Кстати, такими свечами комплектуются некоторые современные моторы с иными системами зажигания.

Стоит отметить, что другие преимущества, которые иногда упоминаются в рекламных проспектах (предварительная ионизация искрового промежутка, каталитическое воздействие и т. п.), не всегда согласуются с теорией искрового разряда.

Больше электродов

Еще одним способом повышения ресурса свечей стало увеличение количества боковых электродов. То есть искра «сама выбирает» межэлектродный промежуток с наилучшими для нее условиями.

В таких свечах у центрального электрода более развитая боковая поверхность и несколько межэлектродных зазоров, работающих попеременно. Поэтому негативное влияние эрозии многократно уменьшается.

Предельный вариант многоэлектродной свечи – так называемая свеча с блуждающей искрой, где роль бокового электрода выполняет бортик в форме кольца на торце резьбового корпуса. Соответственно межэлектродный зазор представляет собой кольцевую щель, в которой искра «гуляет по кругу» самым произвольным образом.

Сделать свечу такой конструкции «горячей» проблематично – сплошной кольцевой электрод экранирует юбку изолятора от раскаленных продуктов сгорания. Не случайно она чаще применяется в спортивных моторах.

У многоэлектродных свечей, в общем-то, всего один «недостаток» – невозможно регулировать величины зазоров (как это делается на стандартных двухэлектродных). Но, по большому счету, и недостатком-то назвать это нельзя. Проще заменить свечи на новые…

Стабильность важнее

Свеча зажигания – это вечный «расходник». И борьба за еще большее увеличение ее ресурса большого смысла не имеет. Поэтому сегодня совершенствование свечей идет в направлении повышения эффективности и стабильности их работы в сложных условиях.

Кстати, самые высокие требования по стабильности предъявляются свечам обычного городского автомобиля – от них требуется надежно работать при холодном пуске двигателя в условиях отрицательных температур, в режимах холостого хода и малых нагрузок или при частых кратковременных поездках и т.д. Именно такие режимы, характеризующиеся плохими условиями для смесеобразования и самоочищения изолятора, наиболее опасны для свечи.

А экологические требования к стабильной работе в условиях повышенного нагарообразования и надежному воспламенению до предела обедненных, недостаточно гомогенизированных топливовоздушных смесей лишь повышаются.

Каким образом инженеры решают эти задачи?

Одной из первых мер стало увеличение размеров искрового промежутка. Увеличение зазора и, как следствие, удлинение искры, повышает вероятность, что на ее пути окажется достаточно смеси для воспламенения. Если оно произошло, больший размер первоначального ядра ускоряет формирование и распространение фронта пламени по камере сгорания. Поэтому за последнюю пару десятков лет межэлектродные зазоры постепенно увеличились от долей миллиметра до миллиметра с лишним.

Читайте так же:  Требования к помещению для кондитерской

Меры, предотвращающие образование токопроводящего нагара на кончике изолятора: 1 – полуповерхностный разряд; 2 – перехватывающий электрод; 3 – дополнительный воздушный зазор

Но пробой большего искрового промежутка требует повышения напряжения и, соответственно, энергии искры. Это стало возможным благодаря совершенствованию систем зажигания, энергия которых возросла почти в 10 раз, а напряжение порядка 30 000 В стало обычным делом.

Но дальнейшее повышение этих параметров проблематично, так как ускоряет эрозию электродов и требует кардинального усиления электроизоляции высоковольтных участков цепи зажигания.

Также повысить надежность и эффективность свечей удалось путем оптимизации конструкции электродов.

Существует два эффекта: экранирующее и подавляющее действие электродов. Экранирующий эффект создает боковой электрод (или электроды), который является препятствием для смеси, поступающей к искровому промежутку. Подавляющий эффект состоит в том, что, находясь вплотную к зародившемуся ядру пламени, имеющие высокую теплопроводность электроды «сосут» из него тепло, которого на начальной стадии не так много.

Обойтись вовсе без бокового электрода нельзя, так же как нельзя сделать его тоньше по соображениям прочности. Поэтому для минимизации экранирования применяют способы, вытесняющие искровой разряд от оси электродов на их периферию. Для этого, например, в свечах NGK V-line на торце центрального электрода сделана насечка V-образного профиля. Поскольку разряд происходит по кратчайшему пути между электродами, удается исключить его привязку к центру электрода. Кроме того, несколько снижается напряжение искрообразования вследствие увеличения напряженности электрического поля на острых кромках, образующихся на торце электрода при его насечке.

Это конструктивное решение запатентовано, поэтому остальным производителям свечей пришлось искать другие способы. И они нашлись: Denso разработала технологию U-groove – боковой электрод с продольной канавкой U-образного сечения, Beru освоила технологию Poly-V изготовления бокового электрода с несколькими V-образными канавками.

Снижения подавляющего действия добиваются, уменьшая площадь контакта обоих электродов с областью воспламенения – срезают на конус боковой электрод или уменьшают диаметр центрального электрода.

Последний способ нашел применение в современных свечах с электродами из экзотических металлов. Так что приварка к электродам тонких и сверхтонких (до 0,4 мм) наконечников из сплавов платины, иридия и т. п. – это не столько экономия драгметаллов (хотя и это важно для снижения стоимости изделий), сколько средство повышения эффективности свечи. Тем более что тонкий наконечник – еще и концентратор напряженности поля, повышающий стабильность искры.

В конструкции современных свечей используется ряд технологий для повышения надежности зажигания в условиях повышенного нагарообразования. Часть из них направлена на то, чтобы с помощью самой искры очищать кончик теплового конуса изолятора. Для этого межэлектродному зазору придается такая конфигурация, что искровой путь проходит вблизи поверхности изолятора и искра выжигает отложения. Так работает, например, технология полуповерхностного разряда.

В свечах с дополнительным воздушным зазором и с «перехватывающим» электродом основной искровой зазор дублируется дополнительным, который перехватывает искру в том случае, если она «стекает» по поверхности изолятора. Тем самым опасность пропуска зажигания уменьшается.

Сегодня совершенствование конструкции свечей идет по пути их миниатюризации. На смену еще недавно распространенному стандарту свечей с резьбой М14 уже приходят новые – с более длинным резьбовым корпусом М12 и даже М10. Миниатюризация – вынужденная мера, которая вызвана уменьшением свободного места для размещения свечи в своде камеры сгорания. Увеличиваются количество и диаметр клапанов, между ними вклиниваются инжекторы непосредственного впрыска топлива – и свече приходится уменьшаться.

Конечно, есть возможность сэкономить на материалах. Но хотя детали свечи становятся миниатюрнее, требования к их точности, механической, электрической прочности и теплопроводности во многом ужесточаются.

В ближайшем будущем свечам все чаще придется работать в моторах с турбонаддувом, в условиях повышенного давления и температуры. И воспламенять сверхобедненные смеси и расслоенные заряды в двигателях с непосредственным впрыском. А это требует дальнейшего улучшения тепловых и электроизоляционных свойств керамики, оптимизации конфигурации искрового пространства, разработки свечей специальной конструкции и высокой точности. Например, таких, которые могут обеспечить позиционирование искрового промежутка в камере сгорания с точностью ±0,2 мм, да еще и при определенной угловой ориентации бокового электрода.

Свечам приходится работать и в моторах с непосредственным впрыском

Если говорить об отдаленной перспективе, на смену привычным свечам зажигания, скорее всего, придут лазерные технологии. Оптическая «свеча», соединенная с источником лазерного излучения гибким световодом, будет направлять интенсивные лазерные импульсы в разные участки камеры сгорания, обеспечивая быстрое и максимально полное сгорание топливовоздушной смеси.

По мнению исследователей, такими системами можно оснащать уже существующие бензиновые двигатели, что позволит еще больше сократить потребление топлива и улучшить экологию. Это не фантастика, известно, что уже разрабатывается лазерная система для двигателей Ford GDI следующего поколения.

Компания сегодня представляет на рынке широкий ассортимент высокоэффективных свечей зажигания, созданных по передовым технологиям.

Например, свечи ТТ были разработаны «с прицелом» на массовые модели автомобилей. Стоит также отметить, что примененная в них технология Тwin Tip запатентована DENSO.

Суть этой технологии достаточно проста: диаметр центрального электрода из никеля уменьшен с 2,5 до 1,5 мм. А на боковой электрод наварен наконечник такого же диаметра – 1,5 мм.

Благодаря этому требуется более низкое напряжение для запуска двигателя, а производимая искра получается намного более сильной, улучшая эффективность зажигания даже при экстремально холодных погодных условиях.

Что важно, свечи ТТ практически достигают эффективности высоко­качественных иридиевых свечей, при этом не используя дорогостоящих драгоценных металлов.

Кроме того, тесты показывают, что, используя свечи TT, можно достичь экономии топлива до 5%.

Линейка свечей зажигания ТТ за счет 15 позиций покрывает более 87% всего парка автомобилей.

Пополнился и «дизельный» ассортимент Denso – в нем появились семь новых позиций свечей накаливания с двойной спиралью. Эти семь свечей заменяют 35 оригинальных номеров, предназначенных для 215 популярных моделей автомобилей ведущих автопроизводителей. Все новые свечи оснащены нагревательной и регулирующей спиралями, которые разработаны специально для дизельных двигателей с непосредственным впрыском топлива.

В ассортименте компании Bosch присутствует ряд новых моделей свечей зажигания.

Первая новинка – свеча зажигания с клеммным соединением нового типа: на новой модели клемма выполнена в виде чаши. Это позволило удлинить изолятор почти на 9 мм, сохранив при этом прежнюю длину самой свечи, в результате чего повысилась ее устойчивость к пробою по внешней части изолятора даже при возросшем давлении в цилиндре.

Благодаря новой конструкции свечи с новым клеммным соединением обладают большей механической прочностью и выдерживают давление в камере сгорания до 250 бар. А использование новых керамических материалов позволило увеличить электрическую прочность до 45 кВ. Испытания показали, что улучшенная благодаря этим свечам воспламеняемость топливно-воздушной смеси позволяет в любых условиях повысить эффективность работы двигателя и при этом сократить расход топлива.

Второе новшество – свечи зажигания Bosch, выполненные по технологии Pin to Pin. Их отличает наличие дополнительных «игольчатых контактов» из сплава платины с иридием на центральном и боковом электродах (диаметром 0,8 и 0,6 мм).

Эта технология позволила значительно увеличить срок службы свечей, а также обес­печить уверенное воспламенение «бедной» смеси в двигателях с непосредственным впрыском топлива. Свечи Bosch, выполненные по технологии Pin to Pin, в основном предназначены для автомобилей Honda, Hyundai, Nissan, Toyota и Volvo.

При производстве свечей зажигания компания NGK Spark Plug широко применяет современные технологические ноу-хау. Например, свечи с игольчатыми напайками на боковых электродах. Тонкие электроды (и центральный, и боковой) позволяют несколько увеличить мощность мотора благодаря генерации более мощной искры. Для предотвращения износа на тонкие электроды делают напайки из иридия и платины. Такая технология, в частности, применяется в свечах зажигания NGK ILZKFR8A7S, специально разработанных для новых двигателей M270 концерна Mercedes-Benz. Кроме того, оснащение свечей направленными боковыми электродами обеспечивает надежное воспламенение при любых режимах эксплуатации мотора.

Кроме утончения электродов, широко используется новый тип узла соединения свечи с высоковольтным проводом: контактный терминал чашеобразного типа. Чашеобразная конструкция более компактна по сравнению со стандартной SAE. А удлинение изолятора свечи за счет использования чашеобразного терминала позволяет противостоять возможному поверхностному пробою.

Есть и другие интересные технические решения. Например, компания разработала технологию применения свечи зажигания в качестве датчика детонации. Величина ионного тока в момент искрообразования пропорциональна давлению в камере сгорания. И постоянно измеряя этот ток, можно иметь точную картину качества сгорания топлива в цилиндре. Такая свеча, в частности, уже работает на Lamborghini Aventador.

Есть в ассортименте NGK и свеча SIZFR6A6D, созданная для двигателей, которые могут работать как на бензине, так и на альтернативных видах топлива. Такая свеча отлично выдерживает повышенное давление, завихрения топливо-воздушной смеси, создаваемые турбонаддувом и нагнетателем, а также повышенную температуру сгорания топлива при работе на газе.

Ассортимент свечей зажигания известного бренда Champion (принадлежащего компании Federal-Mogul) пополнился новыми свечами Platinum и многоэлектродной Multi Ground.

Новые свечи зажигания Champion Bi-Hex с уменьшенным диаметром (M12) и увеличенной длиной резьбы созданы для более узких свечных колодцев двигателей семейства Prince, установленных в Citroёn, Peugeot, BMW и Mini. Эти свечи выдерживают такие же электрические и механические нагрузки, как и свечи со «стандартной» резьбой М14.

Для уточнения: Prince – кодовое название семейства современных автомобильных рядных 4-цилиндровых двигателей, разработанных совместно BMW и PSA Peugeot Citroеn. Это ряд компактных двигателей объемом 1,4–1,6 л с множеством функций, включая прямой впрыск бензина и регулируемые фазы газораспределения.

Многоэлектродные свечи Multi Ground благодаря своей конструкции (закрытая рабочая камера, профилированный центральный электрод, расположенный почти заподлицо с керамическим наконечником изолятора, и др.) имеют более длительный срок эксплуатации и высокую эффективность при хо­лод­ном запуске.

Другой известный бренд компании – BERU, представил девять новых свечей зажигания, которые (вместе с шестью уже зарекомендовавшими себя свечами Ultra X), составляют теперь программу Ultra X Titan.

У свечей нового типа Ultra X Titan верхний электрод является однополюсным с Poly-V-формой (т.е. на поверхность электрода нанесены пять острых кромок, на которых попеременно появляется искра). Это означает низкое напряжение пробоя и пять возможных вариантов появления искры. В сочетании с никель-титановым сплавом высокой жаростойкости это обеспечивает длительную постоянную мощность системы зажигания при оптимальном использовании топлива. А также (в сочетании тонким платиновым центральным электродом) значительно увеличенный срок службы свечи.

Кроме того, в конструкции свечи предусмотрено коронное кольцо для целенаправленного предварительного разряда и последующего стабильного воспламенения, что предотвращает утечку между цент­ральным электродом и электрической массой.

В статье использованы тексты эксперта «АБС-авто» Сергея Самохина

Свечи зажигания экспертиза