Реле к требования к ним

Реле времени с электромагнитным и механическим замедлением

При работе схем защиты и автоматики часто требуется создать выдержку времени между срабатыванием двух или нескольких аппаратов. При автоматизации технологических процессов также может возникнуть необходимость производить операции в определенной временной последовательности.

Для создания выдержки времени служат аппараты, называемые реле времени.

Требования, предъявляемые к реле времени

Общими требованиями для реле времени являются:

а) стабильность выдержки времени вне зависимости от колебаний питающего напряжения, частоты, температуры окружающей среды и других факторов;

б) малые потребляемая мощность, масса и габариты;

в) достаточная мощность контактной системы.

Возврат реле времени в исходное положение происходит, как правило, при его обесточивании. Поэтому к коэффициенту возврата не предъявляется особых требований, и он может быть очень низким.

В зависимости от назначения реле к ним предъявляются специфические требования.

Для схем автоматического управления приводом при большой частоте включений в час требуются реле времени с высокой механической износостойкостью. Требуемые выдержки времени находятся в пределах 0,25 — 10 с. К этим реле не предъявляются высокие требования относительно точности работы. Разброс времени срабатывания может достигать 10%. Реле времени должны работать в условиях производственных цехов, при вибрации и тряске.

Реле времени для защиты энергосистем должны иметь большую точность выдержки времени. Эти реле работают относительно редко, поэтому к ним не предъявляются особые требования по износостойкости. Выдержки времени таких реле составляют 0,1 — 20 с.

Реле времени с электромагнитным замедлением

Конструкция реле времени с электромагнитным замедлением типа РЭВ-800. Магнитная цепь реле состоит из магнитопровода1, якоря 2 и немагнитной прокладки 3. Магнитопровод укрепляется на плите 4 с помощью литого алюминиевого цоколя 5. Этот же цоколь служит для крепления контактной системы 6.

На ярме прямоугольного сечения магнитопровода устанавливается короткозамкнутая обмотка в виде сплюснутой гильзы 8. Намагничивающая обмотка 7 устанавливается на цилиндрическом сердечнике. Якорь вращается относительно стержня 1 на призме. Усилие, развиваемое пружиной 9, изменяется с помощью корончатой гайки 10, которая фиксируется после регулировки с помощью шплинта. Магнитопровод реле выполняется из стали ЭАА. Сердечник катушки имеет круглое сечение, что позволяет применять катушку цилиндрической формы, удобную в производстве. Стержень 1 имеет сечение вытянутого прямоугольника, что увеличивает длину линии касания якоря с торцом ярма и повышает механическую износостойкость реле.

Для получения большого времени при отпускании необходимо иметь высокую магнитную проводимость рабочего и паразитного зазоров в замкнутом состоянии магнитной системы. С этой целью торцы ярма и сердечника и прилегающая к ним поверхность якоря тщательно шлифуются.

Литое основание из алюминия создает дополнительный короткозамкнутый виток, увеличивающий выдержку времени (в схеме замещения все короткозамкнутые обмотки заменяются одним витком с суммарной электрической проводимостью).

У реальных магнитных материалов после отключения намагничивающей обмотки поток спадает до Фост, который определяется свойствами материала магнитопровода и геометрическими размерами магнитной цепи. Чем меньше коэрцитивная сила магнитного материала при заданных размерах магнитной цепи, тем ниже величина остаточной индукции, а, следовательно, остаточного потока. При этом возрастает наибольшая выдержка времени, которая может быть получена от реле. Применение стали ЭАА позволяет увеличить выдержку времени реле.

Для получения большой выдержки времени желательно иметь высокую магнитную проницаемость на ненасыщенном участке кривой намагничивания. Этому требованию сталь ЭАА также удовлетворяет.

Выдержка времени при прочих равных условиях определяется начальным потоком Фо уравнения. Этот поток определяется кривой намагничивания магнитной системы в замкнутом состоянии. Поскольку напряжение и ток в обмотке пропорциональны друг другу, то зависимость Ф(U) повторяет, только в другом масштабе, зависимость Ф(Iw). Если система при номинальном напряжении не будет насыщена, то поток Фо будет в сильной степени зависеть от питающего напряжения. При этом выдержка времени также будет зависеть от напряжения, приложенного к обмотке.

В схемах привода на обмотку реле времени часто подается напряжение ниже номинального, при этом реле будет иметь пониженные выдержки времени. Для того чтобы сделать выдержку времени реле независимой от питающего напряжения, магнитная цепь делается сильно насыщенной. В некоторых типах реле времени снижение напряжения на 50% не вызывает заметного изменения выдержки времени.

В схемах автоматики напряжение на питающую катушку реле времени может подаваться кратковременно. Для того чтобы выдержка времени при отпускании была стабильной, необходимо, чтобы длительность приложения напряжения к питающей катушке была достаточная для достижения потоком установившегося значения. Это время называется временем подготовки или зарядки реле. Если длительность приложения напряжения меньше времени подготовки, то выдержка времени уменьшается.

На выдержку времени реле большое влияние оказывает температура короткозамкнутой обмотки. В среднем можно считать, что изменение температуры на 10° С ведет к изменению времени выдержки на 4%. Зависимость выдержки времени от температуры является одним из основных недостатков этого реле.

Реле РЭВ811…РЭВ818 обеспечивают выдержку времени от 0,25 до 5,5 с. Изготавливаются с катушками на напряжение постоянного тока 12, 24, 48, 110 и 220 В.

Схемы включения реле времени

Время срабатывания реле при подаче напряжения очень мало, так как м. д. с. трогания значительно меньше установившегося значения. Таким образом, возможности реле с электромагнитным замедлением при срабатывании очень ограничены. Если необходимо при замыкании управляющих контактов иметь большие выдержки времени, то целесообразно применить схему с промежуточным реле РП. Обмотка реле времени РВ находится под напряжением, все время питаясь через размыкающий контакт реле РП. .При подаче напряжения на обмотку РП последнее размыкает свой контакт и обесточивает реле РВ. Якорь РВ отпадает, создавая необходимую выдержку времени. Реле РВ в этой схеме должно обязательно иметь короткозамкнутый виток.

В некоторых схемах реле времени может не иметь короткозамкнутого витка. Роль этого витка играет сама намагничивающая обмотка, замкнутая накоротко. Обмотка РВ питается через резистор Rдоб Величина напряжения на РВ должна быть достаточной для достижения потока насыщения в замкнутом состоянии магнитной цепи. При замыкании управляющего контакта К обмотка реле закорачивается, обеспечивая медленный спад потока в магнитной цепи. Отсутствие короткозамкнутой обмотки позволяет все окно магнитной системы занять намагничивающей обмоткой и создать большой запас в м. д. с. При этом выдержка времени не уменьшается даже в том случае, когда питающее напряжение на обмотке составляет 0,5 Uн. Такая схема широко применяется в электроприводе. Реле включается параллельно ступени пускового резистора в цепи якоря. При закорачивании этой ступени обмотка реле времени замыкается и с выдержкой это реле производит включение контактора, шунтирующего следующую ступень пускового резистора.

Схемы включения реле времени с электромагнитным замедлением

Применение полупроводникового вентиля также позволяет использовать реле без короткозамкнутого витка. При включении питающей обмотки реле времени ток через вентиль практически равен нулю, так как он включен в непроводящем направлении. При отключении контакта К поток в магнитной цепи спадает, при этом на зажимах обмотки появляется э.д.с. с полярностью. При этом через вентиль протекает ток, определяемый этой э.д.с., активным сопротивлением обмотки и вентиля и индуктивностью обмотки.

Для того чтобы прямое сопротивление вентиля не приводило к уменьшению выдержки времени (растет активное сопротивление короткозамкнутой цепи), это сопротивление должно быть на один-два порядка ниже сопротивления намагничивающей обмотки реле.

При любых схемах питание намагничивающей обмотки реле должно производиться либо от источника постоянного тока, либо от источника переменного тока с применением мостовой схемы на полупроводниковых вентилях.

Реле времени с механическим замедлением

Реле времени с пневматическим замедлением и с анкерным механизмом. В таких реле электромагнит постоянного или переменного тока воздействует на контактную систему, связанную с замедляющим устройством в виде пневматического демпфера или в виде часового (анкерного) механизма. Выдержка времени меняется путем регулировки замедляющего устройства.

Большим преимуществом реле времени этого типа является возможность создания реле как на переменном, так и на постоянном токе. Работа реле практически не зависит от величины питающего напряжения, частоты питания, температуры.

Пневматическое реле времени РВП, применяется в схемах автоматического управления приводом металлорежущих станков и других механизмов. При срабатывании электромагнита 1освобождается колодка 2, которая под действием пружины 3 опускается вниз и воздействует на микропереключатель 4. Колодка 2 связана с диафрагмой 5. Скорость движения колодки определяется сечением отверстия, через которое засасывается воздух в верхнюю полость замедлителя. Выдержка времени регулируется иглой 6, меняющей сечение всасывающего отверстия.

Читайте так же:  Трудовой договор для продавца продуктового

Реле времени с пневматическим замедлением позволяет очень легко регулировать выдержку времени.

Работа реле времени с замедлителем в виде анкерного механизма происходит в следующем порядке. При подаче напряжения на электромагнит якорь заводит пружину, под действием которой приводится в движение механизм реле. Контакты реле связаны с анкерным механизмом и приходят в движение лишь после того, как анкерный механизм отсчитает определенное время.

Реле времени РВП также имеет и нерегулируемые, мгновенные контакты, которые связаны с якорем электромагнита. Реле времени надежно работают при напряжении до 0,85 Uн.

Моторные реле времени

Для создания выдержки времени в 20—30 мин используются моторные реле времени.

Принцип действия моторного реле времени РВТ-1200

При срабатывании реле времени напряжение одновременно подается на электромагнит 1 и двигатель 2. При этом двигатель через муфту 3,4 и зубчатую передачу 8 вращает диски 5 с кулачками 6, воздействующими на контактную систему 7. Выдержка времени реле регулируется путем изменения начального положения диска 5.

Реле позволяет устанавливать различную выдержку времени в пяти совершенно независимых цепях. Выходные контакты реле времени имеют длительно допустимый ток 10 А.

Эксплуатационно-технические требования к реле

Эксплуатационно-технические требования к реле является основным документом, определяющим условия эксплуатации реле.

1. Реле должно иметь большое число контактов при небольших размерах и весе;
2. Обладать высокой чувствительностью;
3. Иметь высокую надежность;
4. Большую коммутируемую мощность;
5. Малое время срабатывания и отпускания якоря;
6. Большой срок службы;
7. Большую износоустойчивость и ремонтопригодность;
8. Прочную конструкцию, обеспечивающую достаточную вибро- и удароустойчивость;
9. Надежно и стабильно работать при значительных колебаниях параметров окружающей среды;
10. Иметь малую стоимость.

По способности исключать опасные отказы, такие, как сваривание контактов при коротком замыкании, в цепи и замыкание якоря после выключения тока в обмотке. Реле делятся на первые и низкие классы надежности. В устройствах ЖАТС применяются преимущественно реле 1-го класса надежности.

Для реле 1-го класса существуют дополнительные эксплуатационно-технические требования:

1. Реле должно обладать такой надежностью, чтобы не требовался схемный контроль отпускания якоря;
2. При выключении питания отпускание якоря должно происходить под действием собственного веса якоря и связанных с ним подвижных частей, а не от упругости пружин;
3. Должна быть исключена возможность магнитного прилипания якоря к сердечнику после выключения тока (антимагнитный бронзовый штифт ставится);
4. Положение контактных пружин должно обеспечиваться принудительным соединением их между собой и якорем;
5. Конструкция контактов должна обеспечивать размыкание всех тыловых контактов при замыкании хотя бы одного фронтового и наоборот;
6. Фронтовые и общие контактные поверхности не должны свариваться при любых условиях (разнородные материалы: 1- графито-серебрянная смесь; 2- серебро);
7. Замкнутые контакты должны длительно выдерживать ток ЗА без изменения их электрических и механических параметров, а при токах до 6 А не должно возникать опасных отказов;
8. Мощность срабатывания реле отнесенная к общему контакту, должна быть не более 20 мВт;
9. Магнитная система реле должна изготавливаться из материалов, обладающих высокой магнитной проницаемостью и малой коэрцитивной силой, не подверженных заметному старению;
10. Все некоррозионно-стойкие металлические детали должны иметь противокоррозионные покрытия (оцинкованы, никелированы), а неметаллические части должны быть негорючими;
11. Для исключения попадания пыли и влаги реле должны быть закрыты прочным прозрачным влагозащитным и пломбируемым колпаком;
12. Реле должно устойчиво работать при t= — 40 +60 оС
13. Замкнутые контакты не должны размыкаться при вибрации с f=1020 Гц и ускорением не более 0.6 д, а также при вибрации с f=2250 Гц и ускорением не более 1д в вертикальном направлении по отношению к реле и в горизонтальном – в направлении движения якоря;
14. Штепсельные разъемы должны исключать возможность ошибочного вставления в розетку реле другого типа;
15. Срок службы реле определяется режимом эксплуатации и составляет от 0.5 до 20 лет.

Реле к которым не предъявляются дополнительные требования, относятся к низшим классам надежности, и они применяются в менее ответственных цепях устройств АТ и С.

Тэги: Требования, реле, якорь

Классификация реле

Реле являются элементной базой систем железнодорожной автоматики и телемеханики и обеспечивают прежде всего зависимости, необходимые для обеспечения безопасности движения поездов.
Реле железнодорожной автоматики разделяют: по принципу действия — на электромагнитные, электромагнитные с термоэлементом, индукционные (секторные), электронные;
по роду тока, питающего обмотку, — на реле постоянного тока (нейтральные, поляризованные, нейтрально-поляризованные или комбинированные) и переменного тока;
по числу обмоток на сердечнике (сердечниках) — на одно-, двух- и многообмоточные;
по числу положений контактной системы — на двух- и трехпозиционные;
по номинальному напряжению (току);
по времени срабатывания (притяжения) и отпускания якоря — на быстродействующие, нормально действующие, медленно действующие и временные;
по режиму работы — на реле для длительного (непрерывного) режима работы и кратковременного (импульсного) режима;
по активному сопротивлению обмоток, числу витков в обмотках, контактной системе.
Реле железнодорожной автоматики подразделяют также на реле I и II классов надежности. К реле I класса надежности относятся реле, для которых не требуется дополнительный схемный контроль отпускания якоря или дублирование в электрических схемах. Требования к реле I класса надежности следующие: надежное отпускание якоря под действием массы якоря и связанных с ним подвижных частей при отключении напряжения от его обмоток; исключение сваривания замыкающих (фронтовых) контактов и др. Реле I класса применяют в аппаратуре СЦБ, обеспечивающей безопасность движения поездов.
Реле, у которых отпускание якоря гарантируется в меньшей степени и осуществляется в основном под действием реакции контактных пружин, имеют II класс надежности. Защиту от сваривания контактов в этих реле не предусматривают. Реле II класса надежности применяют в аппаратуре, к которой не предъявляются повышенные требования по безопасности.

Малогабаритные реле

Малогабаритные реле постоянного тока относятся к реле I класса надежности и входят в состав аппаратуры СЦБ, обеспечивающей безопасность движения поездов.
Малогабаритные реле имеют два исполнения: штепсельное (в оболочке) для установки на стативах и в релейных шкафах и нештепсельное (с ламелями под пайку) для установки в закрытых релейных блоках. При этом значительная часть штепсельных реле имеет нештепсельные аналоги. В обозначении типа штепсельного малогабаритного реле присутствует буква Ш.
Промышленность изготовляет следующие типы малогабаритных штепсельных реле:
без выпрямительной приставки:
НМШ, АНШ — нейтральные нормально действующие;
НМШМ, АНШМ — нейтральные медленно действующие;
НМШТ, АНМШТ — нейтральные с термоэлементом;
НМПШ — нейтральное пусковое;
ПМПУШ — поляризованное пусковое;
КМШ — комбинированное (с нейтральным и поляризованным якорями);
с выпрямительной приставкой:
ИМШ — поляризованное импульсное;
ИМВШ — поляризованное импульсное;
ОМШ, ОМШМ, АОШ — нейтральные огневые;
АШ, АПШ, АСШ — нейтральные аварийные.
Малогабаритные реле с выпрямительными приставками можно включать в цепи постоянного и переменного тока.
В поляризованных и комбинированных реле установлены поляризующие магниты, за счет которых поляризованный якорь переключается с изменением полярности источника питания постоянного тока, подключаемого к обмотке.
Конструктивные особенности малогабаритных штепсельных реле показаны на примере реле НМШ1 (рис. 1), имеющего следующие основные части: магнитную систему, состоящую из якоря 1, ярма 2, сердечника 12, на котором размещены две катушки 11; штепсельные выводы 8 для подключения обмоток; контактные системы, состоящие из фронтового 5, подвижного 6 и тылового 4 контактов; межконтактные изоляционные пластмассовые прокладки 7, пластмассовое основание 10\ направляющий штырь 9\ защитный колпак 3.


Рис. 1. Конструктивные особенности реле HMIIII

Рис. 2. Расположение контактов и схема соединения обмоток реле НМШ1, НМ1 (вид с монтажной стороны)
Шпули двух катушек нормально действующих реле выполнены из пластмассы, одной или двух катушек медленно действующих реле — из меди. В медленно действующих реле с одной катушкой взамен второй имеется медная гильза.
Катушки (обмотки) реле могут быть включены раздельно, последовательно и параллельно.
В качестве исходного для нейтральных малогабаритных штепсельных реле используется основание реле НМШ1, имеющего восемь контактных групп (рис. 2). Малогабаритные реле с меньшим числом контактов выполняют с применением меньшего числа штепсельных выводов реле НМШ1, но с сохранением их расположения и нумерации.

Рис. 3. Расположение и нумерация выводов реле ПМПУИГ, ИМВШ, ИМШ1, КМШ, км
Поляризованные реле ПМПУШ, ИМШ1, ИМВШ и комбинированные КМШ и КМ имеют расположение и нумерацию штепбельных выводов, приведенные на рис. 3.
Электрические и временные характеристики малогабаритных реле приведены в табл. 1—7. В табл. 1, 4 и 7 для некоторых реле приведены электрические характеристики реле по току и напряжению, не совпадающие с наименованием столбцов (значение тока в столбце с напряжениями и наоборот); в табл. 1—7 приведены номинальные сопротивления обмоток реле по постоянному току.

Рис. 4. Схема включения выпрямителей и обмоток реле НМВШ2,
АНВШ2, АШ2-12/24, АШ2-110/220, АПШ-24, АПШ-110/127,
АПШ-220, расположение контактов реле АПШ-24, АПШ-110/127, АПШ-220

Рис. 5. Схемы включения выпрямителей и обмоток реле АСШ-2, ОМШ2, ОМШМ, АОШ2
В табл. 5.3—5.5 использована нумерация штепсельных выводов встроенных выпрямителей и обмоток реле НМВШ2, АНВШ2, АШ2, АПШ (рис. 4), АСШ и схемы включения встроенных выпрямителей и обмоток реле ОМШ2, ОМШМ, АОШ2 (рис. 5).
В табл. 5.1. время замедления на отпускание реле НМШМ2-1.5 указано при токе 0,5 А; НМШМ2-11/500 по обмотке сопротивлением 11 Ом — при токе 0,25 А; НМПШЗ-0,2/250 по обмотке сопротивлением 0,2 Ом — при токе 1,5 А, остальных — при номинальном напряжении (токе).
Для подключения обмоток двухобмоточных реле НМШ, НМШМ и НМПШ используют штепсельные выводы 1-3, 2-4, однообмоточных — 1-3, двухобмоточных реле АНШ, АНШМ—21-61,41-81, однообмоточных—21-61.

Читайте так же:  Групон возврат купона

Таблица l. Электрические и временные характеристики реле НМШ, НМШМ, АНШМ, АНШ, НМПШ

Сопротив
ление
обмоток,
Ом

Реле железнодорожной автоматики

На сегоднешний день техническое развитие невозможно без широкого применения автоматических устройств, позволяющие осуществлять контроль, защиту и управление определенными видами машин и различных агрегатов. В новейших технических машинах большинство процессов осуществляется с высокой скоростью, и соответственно человек не может успевать осуществлять управление ими без помощи автоматических устройств. Именно эти устройства дают возможность облегчить повседневную работу людей, а также сократить штат сотрудников (обслуживающего персонала). Одним из таких устройств и является реле. В переводе с французского реле (relais, от relayer – сменять, заменять).

Реле – это элемент автоматического устройства, у которого при плавном изменении входной величины происходит скачкообразное изменение выходной величины.

Классификация и условное обозначение реле

В зависимости от конструкции существует множество различных типов реле, которые работают на основе различных принципов.

Если подразделять реле по принципу физической природы явлений, на которое реле предназначено реагировать, то можно выделить следующие типы: электрические (большинство), тепловые, механические, магнитные, оптические, акустические, газовые, пневматические, жидкостные и другие.

Электрические реле в свою очередь (по принципу действия) делятся на электромагнитные, индукционные, магнитоэлектрические и электродинамические. Наиболее распространенным является – электромагнитное реле.

По роду питающего тока электромагнитные реле делятся на 2-е группы:

  • постоянного тока;
  • переменного тока.

А электромагнитные реле постоянного тока бывают следующих видов:

  • нейтральные;
  • поляризованные;
  • импульсные;
  • комбинированные.

Еще реле можно классифицировать по надежности действия:

  • реле первого класса;
  • реле низших классов.

К реле 1-го класса надежности выдвигаются основные требования:

1) отпускание якоря при выключении питания обмотки должно происходить под действием веса самого якоря и связанных с ним подвижных частей, поэтому якорь, как правило, утяжеляют специальными грузами, которые сделаны из немагнитного материала;

2) должна быть полностью исключена возможность магнитного прилипания якоря к сердечнику после выключения тока, для устранения прилипания, на якоре крепят бронзовый антимагнитный штифт;

3) фронтовые и общие контакты реле не должны свариваться, для этого контакты изготавливаются из разных по составу материалов (фронтовые – из граффито-серебряной смеси, а общий – из серебра).

Условное обозначение реле состоит из букв и цифр.

Рассмотрим пример: НМВМШ1-1000

Первая буква обозначает тип реле, в данном случае Н – нейтральное реле (также могут быть: И – импульсное, П – поляризованное, К – комбинированное, Т – трансмиттерное, если первая буква А – аварийное, О – огневое).

Вторая буква М – малогабаритное реле.

Третья буква В – означает, что реле с выпрямителем.

Четвертая М – медленнодействующее (с замедлением), может стоять буква Т – с термоконтактом.

Пятая Ш – штепсельное, если Р – с разборно-болтовое соединение.

После букв идут цифры, которыми обозначаются группы контактов:

1 – максимальное количество контактов, восемь тройников;

2 – 4-е полных тройника;

3 – 2 полных, 2 не полных тройника.

Дальше через (-) идет полное сопротивление обмоток реле в Ом-х, если одна цифра (как в нашем примере), то обмотки включены последовательно, если они включены параллельно, то указывается сопротивление каждой обмотки через (/), например – НМВШ-1000/1000.

Огневые реле контролируют целостность нитей накаливания ламп светофоров.

Графическое обозначение реле:

— нейтральное реле (с последовательно включенными обмотками

— нейтральное реле (с параллельно включенными обмотками

— комбинированное

— импульсное

— поляризованное

— трансмиттерное

— с замедлением при срабатывании (не сразу включается)

— с замедлением при отпускании (не сразу выключается)

— аварийное

Конструкция и свойства электромагнитных реле

Конструкция реле обычно состоит из 3-х органов:

  • воспринимающий;
  • промежуточный;
  • исполнительный.

Воспринимающий или его еще называют чувствительный (катушка реле) преобразует входной параметр в физическую величину, которая необходима для работы реле.

Сравнение преобразованной величины с имеющимся эталоном происходит в промежуточном органе. И при достижении определенного значения осуществляет передачу воздействия от воспринимающего органа к исполнительному.

Исполнительный орган (это контакты), в свою очередь, воздействует на управляемую цепь.

Принцип действия: главным элементом электромагнитного реле (рис. 1) является электромагнит, по средствам которого происходит преобразование электрической энергии в механическое перемещение. Он состоит из обмотки (1) с сердечником (2), ярма (3) и подвижной части, называемой якорем (4).

Рис. 1 Схема электромагнитного реле

Когда электрический ток проходит по обмотке, якорь притягивается к сердечнику и осуществляет воздействие на контактные пружины (5). При этом контакты (6) замыкаются. Реле СРАБАТЫВАЕТ.

Ниже рассмотрим виды электромагнитных реле постоянного тока.

Нейтральное реле

Рис. 2 Схема нейтрального реле типа НМШ

Нейтральное – это реле, которое не реагируют на полярность напряжения, приложенного к обмотке. В него входят: 1 – катушка; 2 – сердечник; 3 – ярмо; 4 – якорь; 5 – противовес. Бронзовый штифт – 6 на якоре, предотвращает его залипание. Якорь, с помощью тяги – 7 управляет контактной системой – 8, которая состоит из 3-х контактов: Фронтового, Общего и Тылового.

Поляризованное реле

Поляризованные реле (рис. 3) своей конструкцией отличаются от нейтральных тем, что у них в магнитной системе имеется постоянный магнит, который реагируют на направление тока в обмотках катушек реле.

Рис. 3 Схема поляризованного реле типа ПМПШ

Магнитная система состоит из: 1 – катушка; 2 – сердечник; 3 – постоянный магнит; 4 – поляризованный якорь; 5 – изоляционная планка; 6 – контакты; ФК – рабочий поток (от обмоток); ФО – поляризованный поток (от магнита).

При отсутствии тока в обмотках ФО удерживает якорь в заданном положении и обеспечивает направленность действия якоря при изменении направления тока в обмотке. ФО, воздействуя с ФК, перемещает якорь из нормального положения в переведенное и наоборот.

Импульсное реле

Рис. 4 Схема малогабаритного импульсного реле типа ИМШ1-0,3

Импульсное реле – будет являться поляризованным реле. Магнитная система данного реле состоит изследующих элементов: катушки (1), постоянного магнита (2) с полюсными надставками (3) и поляризованного якоря (4). Якорь крепится одним концом к стойке (5) пружиной (6). К свободному концу якоря крепится контактная пружина (7), которая своим контактом замыкается с нормальным (Н) или переведенным (П) контактами.

ФО – при смене направления тока обеспечивает направленность действия якоря и удерживает якорь в заданном положении при отсутствии тока в обмотке. ФК – осуществляет перемещение свободного конца якоря, вследствие чего происходит замыкание контактной пружины с (Н) или (П).

Импульсное реле типа ИМШ1-0,3 получило пременение как путевое реле в импульсных РЦ постоянного тока.

В импульсных и кодовых РЦ переменного тока в качестве быстродействующего путевого реле используется импульсное реле типа ИМВШ-110 (в составе это реле есть выпрямительный мостик, который преобразует переменный ток в постоянный).

Комбинированное реле

Комбинированные реле типов КМШ-3000, КМШ-750 и КМШ-450 — они являются сочетанием нейтрального и поляризованного реле с одной общей магнитной системой (рис. 5).

Рис. 5 Схема комбинированного реле

Магнитная система комбинированного реле типа КМШ включает в себя катушки (1) и (2), сердечник (3), постоянный магнит (4), поляризованный якорь (5) и нейтральный якорь (6). При появлении в обмотках тока любой полярности происходит притяжение нейтрального якоря, вследствие чего происходит замыкание контактов: общего (О) и фронтового (Ф).

Изменение положения поляризованного якоря и соответственно замыкание управляемых им контактов осуществляется и зависит от направления (полярности) тока протекающего через обмотки катушек реле.

Основные характеристики электромагнитных реле

— U (I) притяжения якоря;

— U (I) отпускания якоря;

— R обмоток катушек реле;

— t замедления на отпускание и t замедления на притяжение якоря реле.

U (I), при котором якорь реле притягивается и происходит замыкание фронтовых контактов, называется напряжение (током) притяжения.

U (I), при котором осуществляется отпускание якоря реле и происходит замыкание тыловых контактов, называется напряжением (током) отпускания.

Читайте так же:  Госпошлина расходы для усн

Отношение U (I) отпускания к U (I) срабатывания характеризует коэффициент возврата реле:

Также реле характеризует и коэффициент запаса по току – отношение рабочего тока к току притяжения:

Для большого количества реле, которые применяются в устройствах СЦБ (сигнализация, централизация, блокировка), коэффициент возврата находится в пределах 0,25 – 0,5.

Для временных характеристик реле используются параметры:

  • t притяжения – это время от момента включения энергии до момента замыкания замыкающих (фронтовых) контактов;
  • t отпускания – это время от момента выключения энергии до момента замыкания замыкающих (тыловых) контактов.

В зависимости от времени срабатывания реле бывают следующих видов:

  • быстродействующие, со временем замедления на притяжение и отпускание до 0,03 сек.;
  • нормальнодействующие, со временем замедления на притяжение и отпускание от 0,15 до 0,20 сек.;
  • медленнодействующие – 1,0….1,5 сек.;
  • временные – более 1,5 сек.

В настоящее время в системах железнодорожной автоматики и телемеханики очень широко используется микропроцессорная техника, но несмотря на это, реле будут и в дальнейшем применяться в эксплуатации долгие-долгие годы.

В последние годы стали широко внедряться реле, которые созданы на основании новых принципов действия, это герконовые реле и гибридные реле. Они имеют высокую износоустойчивость по числу коммутаций, отличаются быстродействием, и имеют хорошую совместимость с интегральными микросхемами и другими агрегатами эл. техники.

В будущем наиболее перспективно будет использование реле совместно с полупроводниковой техникой. При этом важнейшие логические задачи управления будут решаться путем использования элементов бесконтактной техники, а реле будут применяться в качестве выходных и периферийных устройств, которые будут управлять довольно мощными приборами и их оставляющими.

Электромагнитные реле тока и напряжения;

Требования предъявляемые к реле

К реле защиты энергосистем предъявляются требования селективности, быстродействия, чувствительности и надежности. Под селективностью понимается способность реле отключать только поврежденный участок энергосистемы. Реле защиты энергосистем эксплуатируются, как правило, в облегченных условиях. Они не подвержены воздействию ударов, вибрации, пыли, газов, вызывающих коррозию. К ним не предъявляются высокие требования в части износостойкости.

К реле систем автоматики, а также для управления и защиты электропривода предъявляются требования механической и электрической износостойкости, т.к. эти реле могут работать в тяжелых условиях эксплуатации и число включений в час может достигать 1000 и более. Также к ним предъявляются высокие требования по надежности.

Электромагнитные реле приводятся в действие с помощью электромагнитов постоянного или переменного тока.

Реле постоянного тока делятся на нейтральные и поляризованные. Нейтральные реле одинаково реагируют на постоянный ток обоих направлений, протекающий по его обмотке, а поляризованные реле реагируют на полярность управляющего сигнала.

Работа электромагнитных реле основана на использовании электромагнитных сил, возникающих в металлическом сердечнике при прохождении тока по виткам его катушки.

Управляемая цепь электрически никак не связана с управляющей, более того в управляемой цепи величина тока может быть намного больше чем в управляющей.

Коэффициент возврата электромагнитных реле не превышает 0,8 – 0,9.

Реле тока РТ-40, используемое в схемах защиты энергосистем и мощных электродвигателей. Токи от 0,2 до 200 А.

Реле тока РЭВ-570 применяются в качестве реле максимального тока в основном для защиты электродвигателей постоянного тока от токов короткого замыкания. Выполняются на токи от 1,6 до 1250 А.

3 – обмотка из медной шины;

6 – гайка, регулирующая усилие пружины;

7 – изоляционная пластина, которая связывает якорь с подвижным контактом;

8 – подвижный контакт;

9 и 10 – неподвижные контакты.

12 – гибкая связь.

местное управление кнопкой SB1;

дистанционное отключение по параметрам КИП из АСУТП;

отключение электродвигателя от токовых перегрузок;

сигнализация работы электропривода в АСУТП;

сигнализация «вкл», «откл», «авария» на внешней панели модуля;

сигнализация о срабатывании токового реле в АСУТП.

Поляризованные (ипульсные) реле.

Импульсное реле применяется для управления электрическими цепями посредством импульсных команд, посылаемых нажатием кнопок. Применение импульсного реле позволяет осуществлять дистанционный контроль с сигнализацией, контроль за освещением помещения сразу с нескольких проводов.

Импульсный сигнал на входе реле изменяет состояние выхода.

Реле минимального напряжения.

При КЗ в сети напряжение на двигателях уменьшается, а ток в статоре возрастает. Контакторы могут не успеть отключить двигатель от сети, если КЗ длится не более 0,05 с. При перерыве электроснабжения двигатели неответственных потребителей должны быть отключены, причем после восстановления напряжения их повторное включение произойти не должно, т.к. одновременный самозапуск двигателей приводит к значительному снижению напряжения, что затрудняет самозапуск двигателей ответственных механизмов.

Для защиты от понижения напряжения применяют электромагнитные реле напряжения. При понижении напряжения сети такое реле размыкает свой контакт в цепи катушки контактора, который отключает двигатель от сети. Возможно также применение реле минимального напряжения с выдержкой времени.

Реле времени — простое и необходимое устройство автоматики

24 мая 2014 г. в 13:11, 520

Реле времени считается одним из наиболее простых и в то же время необходимых устройств автоматики. Предназначено это устройство для выполнения задачи отслеживания заданного заранее времени и временного интервала. Реле используется в случаях, когда нужно автоматически выполнить какое-либо действие, но не сразу после появления сигнала, а через небольшой промежуток времени.

Процесс программирования реле времени заключается в установке режима работы, диапазона и необходимого интервала времени. При автоматизации технологических процессов также может возникнуть необходимость производить операции в определенной временной последовательности.

По способу программирования реле времени делятся на два вида: с аналоговым и цифровым программированием. При этом каждый из видов имеет свои преимущества и предназначается для более эффективного использования их функций. К примеру, аналоговое реле времени достаточно легко программируется, перенастраивается, оно гораздо проще в эксплуатации и несколько дешевле по стоимости. Реле цифровое позволяет задать наиболее точный временной интервал и исключает возможность появления программной ошибки. С помощью органов контроля реле времени легко программируются. Они монтируются на DIN-рейку или на лицевую панель. Способ подключения : через специальную колодку, разъем, клеммы Для задания времени используются переключатели, потенциометры и кнопки. У нас имеются многофункциональные, многопрограммные реле времени и таймеры,
Также простые недорогие аналоговые реле времени.

Дополнительные возможности

Некоторые модели реле времени для осуществления бесперебойной работы в особенно критические моменты оснащают встроенными аккумуляторами, которые можно подзаряжать от сетевого питания или использоваться импульсный блок питания. На протяжении длительного времени запрограммированное устройство сохраняет заданные параметры, потому что оно имеет энергонезависимую память. Каждое реле времени оборудовано на передней панели информационным табло, где представляются в наглядном виде все данные, необходимые для анализа. Реле времени не требуют постоянного высококвалифицированного обслуживания, они достаточно надежны, просты в эксплуатации, прекрасно защищены от помех, влаги и пыли.

Требования, предъявляемые к реле времени

Общими требованиями для реле времени являются:

а) стабильность выдержки времени вне зависимости от колебаний питающего напряжения, частоты, температуры окружающей среды и других факторов;
б) малые потребляемая мощность, масса и габариты;
в) достаточная мощность контактной системы.

Возврат реле времени в исходное положение происходит, как правило, при его обесточивании. Поэтому к коэффициенту возврата не предъявляется особых требований, и он может быть очень низким.

В зависимости от назначения реле к ним предъявляются специфические требования.

Для схем автоматического управления приводом при большой частоте включений в час требуются реле времени с высокой механической износостойкостью. Требуемые выдержки времени находятся в пределах 0,25-10 с. К этим реле не предъявляются высокие требования относительно точности работы. Разброс времени срабатывания может достигать 10%. Реле времени должны работать в условиях производственных цехов, при вибрации и тряске.

Реле времени для защиты энергосистем должны иметь большую точность выдержки времени. Эти реле работают относительно редко, поэтому к ним не предъявляются особые требования по износостойкости. Выдержки времени таких реле составляют 0,1-20 с.

Область применения реле времени

Многофункциональное программное реле времени имеет достаточно обширную область применения. Простая схема подключения позволяет применять его для управления освещением в домах, для создания искусственного света, в частности на птицефабриках, для оснащения насосов, которые применяются для подачи воды, в осветительных и рекламных щитах, в холодильном, воздушном, и испытательном оборудовании и т.п. Кроме того, реле времени устанавливается на оросительных системах и термопечах.

Цель применения

Основная цель, которая преследуется при оборудовании систем подобного рода реле времени — это возможность экономии энергоресурсов, снижение нагрузки на себестоимость продукции. Компания ООО «Электрополе» предлагает купить по низкой цене любой тип реле времени, отвечающий самым высоким требованиям при эксплуатации подобных устройств.

Источник: ООО «Электрополе»

Реле к требования к ним